忍者ブログ
AdminWriteComment
 『読んで面白い』『検索で来てもガッカリさせない』『おまけに見やすい』以上、三カ条を掲げた〜快文書〜創作プロフェッショナル共が、心底読み手を意識した娯楽文芸エンターテイメントを提供。映画評論から小説、漢詩、アートまでなんでもアリ。嘗てのカルチャー雑誌を彷彿とさせるカオスなひと時を、是非、御笑覧下さいませ。
No.
2017/10/21 (Sat) 11:59:29

×

[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。

No.252
2010/03/13 (Sat) 05:30:02

剰余群

A,B が群 G の部分集合であるとき、集合 AB を
 AB = { ab | a∈A, b∈B }
でさだめよう。

さて前回ラグランジュの定理の証明の中で、G が有限群、H がその部分群であるとき、G は互いに共通部分を持たないような分割
G = g_1H ∪ g_2H ∪… ∪g_mH
を持つと言った。そこで g_1H, g_2H, ... ,g_mH を要素とするような集合を G/H と書き、G の H による剰余類集合とよぶ:
G/H = { g_1H, g_2H, ... ,g_mH }
この剰余類集合 G/H が群になっていたら面白いのだけど、そのためには部分群 H がある条件を満たす必要がある。

群 G の部分群 H が次の条件を満たすとき、H を G の正規部分群という:
 G のどんな要素 g に対しても gH = Hg .

ここで、もちろん
 gH = { gh | h∈H } , Hg = { hg | h∈H }
である。H が G の正規部分群であることを H ⊲ G と書くこともある。


定理1. H が G の 正規部分群であれば、剰余類集合 G/H は群をなす。このとき G/H を G の H による剰余群という。

証明 G/H の要素 aH と bH の積は、H が正規部分群であることから、
 (aH)(bH) = a(Hb)H = a(bH)H = (ab)HH
ここで HH = { gh | g∈H, h∈H } であるが、H は群だからその中の2つの要素の積は H に属している。したがって HH⊂ H. しかし H は単位元 e を含んでいるから、H = { eh | h∈H } ⊂ HH. したがって HH = H となり、上の式に戻ると
 (aH)(bH) = (ab)HH = (ab)H = abH.
また
(1) G/H の要素 aH, bH, cH に対して
 ((aH)(bH))(cH) = (abH)(cH) = (ab)cH = a(bc)H = (aH)(bcH) = (aH)((bH)(cH)),
(2) G/H のどんな要素 aH に対しても
 (aH)H = a(HH) = aH , H(aH) = (Ha)H = (aH)H = a(HH) = aH,
(3) G/H のどんな要素 aH に対しても
(aH)(a^(-1)H) = a(Ha^(-1))H = a(a^(-1)H)H = (aa^(-1))HH = eHH = eH = H,
 同様に (a^(-1)H)(aH) = H, 
がなりたつ。つまり G/H は群である。  (証明終り)

(2)を見ると H が剰余群 G/H の単位元であり、a^(-1)H が aH の逆元である事がわかる。


さて群 G の算法 ∘ が、G のどんな要素 a, b に対しても「交換法則」
 a∘b = b∘a
を満たしているとき、G をアーベル群とよぶ。この場合、算法 ∘ を記号 + で書くことが多い:a + b = b + a.

しかし実数 m, n に対して「掛け算」も
 m × n = n × m
のように交換法則を満たすではないか、では掛け算も「+」で書くのか、と思われるかもしれないが、実数の掛け算は例外的に m × n , または mn のように記す習慣である。

G がアーベル群で算法が + で書かれているとき、G の部分集合 H が G の部分群であるための条件は
 H のどんな要素 a, b に対しても a + b ∈ H , -a ∈ H
となることである。このときアーベル群 G の H による剰余類集合は、
 G/H = { g_1+H , g_2+H , ... , g_m+H }
のように記される。アーベル群 G の部分群 H はつねに正規部分群である。というのも、G のどんな要素 g に対しても
 g + H = { g + h | h∈H } = { h + g | h∈H } = H + g
となるから。したがって G/H は剰余群となり、また次の算法でアーベル群となる。
 (a + H) + (b + H) = (a + b)+ H .
G/H の単位元は H, また a + H の逆元は (-a) + H である。



さて、自然数全体の集合を N, 整数全体の集合を Z, 有理数全体の集合を Q, 実数全体の集合を R, 複素数全体の集合を C で表すことが多い。

整数全体の集合 Z が通常の「足し算」で群になっていることは容易にわかる。つまり
(1) Z のどんな要素 a, b, c に対しても 
 (a + b) + c = a + (b + c),
(2) Z のどんな要素 a に対しても
 a + 0 = 0 + a = a,
(3) Z のどんな要素 a に対しても
 a + (-a) = (-a) + a = 0,
が成り立つ。Z を足し算で群となっていると見るとき、群 Z を加法群(または加群)とよぶ。
(2)より加法群 Z の単位元は 0 であり、a の逆元は -a である。
加法群 Z はアーベル群である、つまり Z のどんな要素 a, b に対しても
 a + b = b + a.

Z の要素 k に対して
kZ = { kn | n∈Z }
とすると、kZ は k の倍数全体からなる集合である。たとえば
 2Z = { 2n | n∈Z } = { 0, ±2, ±4, ±6. ±8, ... }
は偶数全体の集合、
 3Z = { 3n | n∈Z } = { 0, ±3, ±6, ±9. ±12, ... }
は 3 の倍数全体の集合である。
さて Z の要素 k に対して kZ は、加法群 Z の部分群となる。実際
 kZ の要素 ka, kb に対して ka + kb = k(a + b) ∈ kZ, -ka = k(-a) ∈ kZ
となるからである。さて上述のことから kZ は Z の正規部分群で Z/kZ は剰余群となる。
 Z/kZ = { kZ , 1+kZ , 2+kZ , 3+kZ , ... }
しかし
k+kZ = { k+kn| n∈Z } = { k(1+n)| n∈Z } = { k(1+n)| 1+n∈Z } = kZ ,
(k+1)+kZ = (1+k)+kZ = 1+(k+kZ) = 1+kZ ,
同様に (k+2)+kZ = 2+kZ , (k+3)+kZ = 3+kZ , ...
となるから、Z/kZ は結局
 Z/kZ = { kZ , 1+kZ , 2+kZ , 3+kZ , ... , (k-1)+kZ }
と k 個の要素からなる。ところで 1+kZ という名前は長いから、これを 1~ とも書くことにする。つまり
 Z/kZ = { 0~, 1~, 2~, 3~, ... , (k-1)~ }.
Z/kZ での算法は、Z/kZ の要素 a~, b~ に対し
 a~+ b~ = (a + b)~
で定められる。

ところでいま整数 a, b に対し、a-b ∈ kZ とする。このとき a-b = kn となるような整数 n がある。このとき a = b + kn だから a ∈ b+kZ. よって前回のラグランジュの定理の証明から、a+kZ = b+kZ となる。まとめると、
 a-b ∈ kZ ならば a~ = b~.
一般に a-b ∈ kZ であることを
 a ≡ b (mod k)
と書くことも多い。


(c) 2010 ntr ,all rights reserved.
 

PR
[256]  [492]  [255]  [254]  [253]  [252]  [251]  [250]  [249]  [248]  [247
執筆陣
HN:
快文書作成ユニット(仮)
自己紹介:
 各々が皆、此の侭座して野に埋もるるには余りに口惜しい、正に不世出の文芸家を自称しております次第。以下、【快文書館】(仮)が誇る精鋭を御紹介します。


 ❁ ntr 〜 またの名を中村震。小説、エッセイ、漢詩などを書きます。mixiでも活動。ふだん高校で数学を教えているため、数学や科学について書くこともあります。試験的にハヤカワ・ポケット・ブックSFのレビューを始めてみました。

 ❖ 呂仁為 Ⅱ 〜 昭和の想い出話や親しみやすい時代物、歴史小説などについて書きます。

 ✿ 流火-rjuka- ~ 主に漢詩の創作、訳詩などを行っています。架空言語による詩も今後作りたいと思っています。

 ☃ ちゅうごくさるなし
主に小説を書きます。気が向けば弟のカヲスな物語や、独り言呟きなことを書くかもしれません。

 ♘ ED-209 〜 PNの由来は映画『ロボコップ』に登場するオムニ社の敵役ロボットからです。今まで書き溜めてあった自身の体験談やコラムを発表するには良い機会と思い寄稿させて頂きました。是非、御読みになってみてください。そして何より皆さんに楽しんで貰えれば嬉しいです。

 ☠ 杏仁ブルマ
セカイノハテから覗くモノ 



 我ら一同、只管に【快文書】を綴るのみ。お気に入りの本の頁をめくる感覚で、ゆるりとお楽しみ頂ければ僥倖に御座居ます。









 ※ 基本的に当ページはリンクフリーです。然し乍ら見易さ追求の為、相互には承っておりません。悪しからず御了承下さい。※







文書館内検索
バーコード
忍者ブログ [PR]